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achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a
tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that

are currently under development, this review paper focuses on a unique, promising approach that takes advan-

Keywords: ; . R . o §
Circulating tumor cells (CTCs) tages of naturally occurring processes achievable through application of nanotechnology to realize significant im-
Nanotechnology provement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this
Dendrimer biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We
Cell rolling also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which pro-
Multivalent binding vides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such
Liquid biopsy as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guide-

lines and that ultimately help to realize personalized therapy are discussed.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Currently available methods for cancer diagnosis and prognosis in-
clude medical imaging techniques, solid tissue biopsies, and liquid biop-
sies targeting biomarkers in patients' blood [1-5]. Medical imaging
techniques, including magnetic resonance imaging (MRI), computed to-
mography (CT), fludeoxyglucose-positron emission tomography (FDG-
PET), and ultrasound tomography scans, are currently used as front-line
standards to detect abnormal tissues as signs of primary cancer as well
as recurrence of cancers [6-8]. However, relatively low sensitivity, re-
quired use of radioactive contrast agents, and high cost have hindered
their frequent applications to patients for effective monitoring on dis-
ease progress and efficacy of applied therapeutics [9-11]. Following
the discovery of abnormal tissues using the imaging techniques, solid
tissue biopsies are typically performed to determine the pathology
and the clinical stage of the disease. However, its invasive nature often
results in discomfort/pain to patients and the risk of complications,
such as bleeding, infection, and, rarely, tumor spreading along the
track of the needle [12,13]. In addition, information obtained from tissue
collected from a single location at a given time provides only limited
snap-shot of the tumor which does not reflect the heterogeneity and
dynamicity of tumors [14-16]. Liquid biopsies based on detection of
biomarkers in cancer patients' blood have recently emerged as a poten-
tially alternative way to overcome the limitations of the aforementioned
methods, because they allow clinicians to frequently monitor therapeu-
tic responsiveness and cancer recurrences with minimally invasive pro-
cedure and low cost [17,18]. For instance, screening of prostate-specific
antigen (PSA) and carcinoembryonic antigen (CEA) has shown clinical
success in diagnosis of prostate and colorectal cancers, respectively
[19-22]. However, these molecular biomarkers have clinical signifi-
cance only for a few specific cancer types, and do not provide other
prognostically valuable information, such as genetic mutation in cancers
[23]. To address the limitations, novel biomarkers that provide valuable
information for cancer diagnosis/prognosis and that enable liquid biop-
sy, various genetic analyses, and ultimately personalized medicine
would obviously be desirable to fill the clinically unmet need.

Liquid biopsy via detection of circulating tumor cells (CTCs) from pe-
ripheral blood of patients is a promising alternative to detect primary
and metastatic tumors since cancer metastasis is frequently mediated
by CTCs that are shed from primary tumor sites [8,24-31]. Furthermore,
it has been reported that CTC counts well correlate with clinical stage,
metastasis, and recurrence of cancer [24,25,32]. CTC detection from can-
cer patients' blood also allows efficient monitoring of the biomarker as
patient compliance to frequent blood drawing is typically high due to
its minimally invasive and cost-effective nature. Additionally, detected
CTCs have potential to provide genetic information of heterogeneous
and dynamic tumors, which would be useful to develop a personalized
therapy [33,34]. Consequently, the CellSearch™ system was developed
to detect CTCs from clinical specimens and is the first FDA-approved
CTC detection system for metastatic breast (2004/2006), colorectal
(2007), and prostate cancers (2008) [35]. CellSearch™ utilizes
immunoaffinity-based detection and separation of CTCs. Briefly, a
blood layer containing mononuclear cells, so-called buffy coat, is sepa-
rated from 7.5 mL of peripheral blood of patients, followed by incuba-
tion with magnetic nanoparticles coated with anti-epithelial-cell-
adhesion-molecule (aEpCAM) [24,26]. This step results in magnetiza-
tion of CTCs that express EpCAM (not expressed by normal hematologic
cells), followed by separation of CTCs using a magnet. The captured CTCs
are immunostained against epithelial cell-specific cytokeratin (CK),

leukocyte-specific CD45, and nucleus (DAPI), and CK positive, CD45,
negative, and DAPI positive cells are identified as CTCs [36]. This method
has shown a degree of clinical success, i.e., having a threshold number of
5 out of 7.5 mL of blood as an indicator of patient survival [37]. However,
CellSearch™ suffers from its limited sensitivity, often failing to
provide actionable information to physicians, resulting in a very low
prescription rate [38,39]. Since then, various CTC detection methods
have been introduced to improve the CTC detection sensitivity
and specificity. Among those, capture systems, such as size-based trap-
ping system (e.g., ISET) [40,41], immunoaffinity-based fluidic
system (e.g., NanoVelcro Chips and CTC-Chip) [30,42-45], and
immunostaining-based cytometry system (Epic HD-Chip) [46,47],
have shown promising results. However, an improved CTC detection
method with clinically significant sensitivity and specificity toward
CTCs are still in need to achieve early detection and reliable prognosis
of cancer progress.

In response to the need of a CTC-detection technology enabling
highly sensitive and specific capture, we have developed a platform
using a biomimetic nanotechnology approach that integrates
biomimicking cell rolling and multivalent binding engineered via
dendrimer-based nanotechnology and microfluidics engineering [27,
28,48]. Our capture system is unique in four aspects. First, it utilizes nat-
urally occurring cell rolling that is often found in many of initial interac-
tions between flowing cells in the blood and endothelial layers in events
such as inflammation, stem cell homing, and CTC transmigration
[49-51]. Cell rolling mediated via human recombinant E-selectin pulls
the fast-flowing cells down to the capture surface, thereby increasing
the chance of the cells to interact with the surface. Second, immobiliza-
tion of capture agents that are linked to dendrimers significantly ele-
vates capture efficiency and specificity through dendrimer-mediated
multivalent binding effect. Third, the surface platform that combines
cell rolling and multivalent binding also allows to employ virtually
any antibodies that are specific to CTCs. Finally, the three unique aspects
are engineered to be integrated into a single capture platform through
applications of nano-scale dendrimers and fluidics engineering. The
combination of all four aspects has been proven effective in capturing
CTCs, as reported in our in vitro data and preliminary clinical data [27,
28,48,52]. This review paper highlights the concept and development
of our biomimetic platform for improved CTC detection sensitivity and
selectivity, covering from its CTC capture mechanisms to its application
in monitoring therapeutic effects and clinical outcomes.

2. Biomimetic nanotechnology to improve CTC capture

The adhesion of CTCs to endothelial cells is precisely regulated by the
micromechanical and kinetic properties of molecular binding interac-
tions with cell adhesion molecules, extracellular matrix components,
and chemokines under the local circulatory hemodynamics in special-
ized microvasculature niches [53-55]. The physiological interactions
between CTCs and an endothelium in the bloodstream, as illustrated
in Fig. 1a, could be classified into two stages: initial surface binding
with fast association/dissociation kinetics, resulting in cell rolling; and
stationary, tight adhesion steps [54,56]. To detect and isolate target
CTCs at a great sensitivity and specificity, we tried to mimic the concur-
rent rolling and firm adhesion in the physiological interactions on our
biofunctionalized surface using E-selectin and aEpCAM - one of the
most frequently used CTC capture agents - for a proof-of-concept
study. Moreover, to substantially increase the firm adhesion kinetics,
poly(amidoamine) (PAMAM) dendrimers were also used to
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Fig. 1. Schematic diagrams of the biological interaction between CTCs and endothelium (a) and our biomimetic approach for CTC capturing on a micropatterned surface using iterative cell
rolling and multivalent stationary adhesion (b). The inset diagram represents aEpCAM-immobilized dendrimers, flexible polymer nanolinkers, by which the multivalent binding effect can

be achieved through locally concentrated aEpCAM.

immobilized aEpCAM to mediate strong multivalent binding effect [27,
57]. Using this configuration, we assessed the following three hypothe-
ses: i) E-selectin-mediated cell rolling can efficiently recruit flowing
cells from bulk flow to the capture surface with distinct biofunctions
(selectin to induce rolling and aEpCAM to statically capture target
cells); ii) the binding strength and stability between aEpCAM and
CTCs can be substantially enhanced via dendrimer-mediated multiva-
lent binding; and iii) the sequential binding events of cell rolling and
multivalent binding can be micropatterned on a single platform surface
to enhance overall capture efficiency of the surface (Fig. 1b).

2.1. Cell rolling for efficient cell recruitment from bulk flow

During the process of CTC extravasation, CTCs often bind to vascular
endothelium in a manner analogous to leukocyte homing to sites of in-
flammation and homing of hematopoietic progenitor cells, which is ini-
tiated via a transient adhesion of flowing cells to the endothelium,
known as cell rolling [58]. A family of selectins on the vascular endothe-
lial cell surface, E-selectin (CD62E), L-selectin (CD62L), and P-selectin
(CD62P), has been known to be mainly involved in the molecular mech-
anism mediating shear-resistant adhesive interactions with membrane
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Fig. 2. The improved capture efficiencies of the surfaces immobilized with the mixtures of anti-EpCAM and E-selectin (a) and a representative image of HL-60 and DsRED-transfected MCF-
7 cells (red cells) on patterned E-selectin/anti-EpCAM coated surfaces (b). (a) Based on the numbers of DSRED-MCF-7 cells injected and recovered using a flow chamber, the capture
efficiency was calculated at a shear stress of 0.16 dyn/cm?. As increasing E-selectin concentration, the capture efficiency of the surfaces was further enhanced by up to 3-fold, which
was statistically higher than the surface functionalized with aEpCAM alone (one-factor ANOVA, Error bars: standard error, * p < 0.05). (b) From the mixture with HL-60 (a leukocyte
model: white), DsRED-transfected MCF-7 cells (a CTC model: red) on the anti-EpCAM coated region of the patterned surface with E-selectin and anti-EpCAM were efficiently isolated.

(Copyright @ American Chemical Society, Ref. [48].)
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ligands on the carcinoma cell surface [59-62]. The rapid turnover of
selectin-ligand bonds, due to their fast on- and off-rates along with
their remarkably high tensile strengths, enables them to mediate cell
tethering and rolling in shear flow [28]. Among them, E-selectin, an in-
ducible endothelial cell-surface glycoprotein [63], was chosen to induce
CTC rolling on our biomimetic platform, since it is being involved in the
adhesion and homing of various types of cancer cells such as prostate
[58], breast [51,64,65], small cell lung cancer cells [66], and colon [61,
67,68] carcinoma cells.

Recombinant human E-selectin Fc chimera proteins, a hybrid pro-
tein of human IgG; constant domains (Fc) and E-selectin binding do-
mains through genetic engineering of a fusion gene, were immobilized
on an epoxy-functionalized glass surface. Under flow conditions,
human breast cancer and leukemia cell lines, MCF-7 as a CTC model
and HL-60 as a leukocyte model, respectively, were efficiently recruited
from bulk flow to the capture surface, and rolled in a shear stress-
dependent way [48,69]. However, given that a large class of hematolog-
ical cells, including leukocytes, platelets, neutrophils, mesenchymal and
hematopoietic stem cells, and metastatic cancer cells all exhibit rolling
on E-selectin, CTC detection that is solely based on cell rolling has limi-
tations to achieve a capture device with sufficient specificity to CTCs.

To provide sufficient specificity to the surface, the most commonly
used CTC-specific antibody, aEpCAM, was co-immobilized to differenti-
ate target tumor cells out of the rolling cell population. The surface im-
mobilization of E-selectin and aEpCAM was confirmed by X-ray
photoelectron scattering (XPS) and fluorescence microscopy using
fluorophore-conjugated antibodies. XPS analysis showed an increase
in carbon and nitrogen compositions and decreased silicon content
from the functionalized glass surface upon the surface functionalization.
Fluorescence-labeled proteins, such as fluorescein-anti-E-selectin
(green fluorescence) and APC-anti-EpCAM (red fluorescence), were
also used to confirm the surface functionalization with E-selectin
using a fluorescence microscope, as previously shown in our earlier re-
port [27]. The immobilized proteins maintained their characteristic bio-
logical adhesive functions, i.e., cell rolling by E-selectin and tumor cell-
specific stationary binding by aEpCAM, as tested using in vitro cell
lines under flow conditions (Fig. 2a). Note that the sole use of E-
selectin would not provide specific capture of tumor cells as many he-
matological cells (e.g., leukocytes, neutrophils, and other inflammatory
cells), in addition to various stem cells and CTCs, can all roll on the sur-
face. The addition of E-selectin can induce the rolling of various cell
types to be readily accessible by aEpCAM that recognizes/captures
tumor cells, resulting in substantially enhanced capture efficiency of
tumor cells by >3-fold enhancement, compared to the surface with
aEpCAM alone (Fig. 2b). The E-selectin-induced tumor cell rolling
most likely maximizes the chance of the tumor cells to interact with
aEpCAM on the surface, resulting in effective stationary binding and im-
proved detection sensitivity of CTCs. These results proved our first hy-
pothesis, i.e., efficient recruiting of flowing cells to the capture surface
via cell rolling, thereby enhancing capture efficiency of the surface.

2.1.1. Connection to the literature: the attenuated tumor growth and me-
tastasis in selectin-deficient animals

Our concept to improve the CTC detection sensitivity through E-
selectin-mediated cell rolling is highly supported by other literature re-
garding how E-selectin involves efficient cell recruitment in cancer me-
tastasis. For instance, the metastasis of human colon cancers to lung was
significantly reduced in E-selectin-deficient, severe combined immuno-
deficient (SCID) mice [61], and E-selectin expressing on bone marrow
endothelial cells (BMECs) leads the predilection of prostate tumor me-
tastasis to bone, compared to other tissue microvessels [58,70,71].In ad-
dition, our approach to monitor the interaction between cancer cells
and recombinant E-selectin in shear flow resulted in elucidating some
of the molecular and biophysical mechanisms of CTC adhesion to endo-
thelial cells via E-selectin. For example, MCF-7 cells express none of pre-
viously known ligands to E-selectin, such as E-selectin ligand-1 (ESL-1)

[72], P-selectin glycoprotein ligand-1 (PSGL-1) [73,74], sialyl Lewis X
(sLe®), sialyl Lewis® (sLe®) [75,76], CD43[77], hematopoietic cell E- and
L-selectin ligand (HCELL; a specialized glycoform of CD44) [70], B2
integrins [78], and CD44v4[79]. By a series of molecular and cellular ex-
periments, we were able to identify CD24 overexpressed on MCF-7 cells
as an E-selectin ligand for the first time to our knowledge [27]. Given the
oncological significance of E-selectin, better understanding of E-selectin
ligands on the cancer cells would help to potentially find a way to pro-
hibit the spreading of primary cancers in patients and provide guide-
lines for developing anti-metastatic therapies by disrupting the E-
selectin receptor-ligand bonds, which is well reviewed in a previous
publication [70].

2.2. Dendrimer-mediated multivalent binding for strong, specific CTC
capture

As mentioned above, the stationary binding between aEpCAM and
tumor cells was observed, along with the cell rolling on E-selectin
under flow. The aEpCAM-based tumor cell enrichment was critical to
detection specificity, especially for extremely rare CTCs among numer-
ous hematological cells. However, it is well known that the expression
level of EpCAM on CTCs is not always maintained high, unlike some of
the in vitro tumor cells, due to intrinsic heterogeneity of tumors and
epithelial-mesenchymal-transition (EMT). By introducing multivalent
binding effect through increasing localized density of surface-
immobilized aEpCAM, we attempted to increase the binding strength
and detection specificity of the rare, heterogeneous CTCs on our capture
surfaces.

2.2.1. Multivalent binding effect

Multivalent binding is the simultaneous binding of multiple ligands
to multiple receptors in biological systems, which is observed in many
physiological and pathological processes, including the attachment of
viral, parasitic, mycoplasmal, and bacterial pathogens to the surface of
a host cell during the infection process [80-82]. These multiple interac-
tions impart the substantial increase of collective binding strength
(avidity) for the interaction of a relatively weakly bound ligand and its
receptor without increasing the affinity of single, monovalent ligand-
receptor interactions [81]. The following cooperative, localized bindings
at adjacent sites significantly influence the equilibrium between associ-
ation and dissociation of a ligand from the initial site on the receptor at
the first binding [83]. The binding strength and stability of multivalent
ligands to surface-bound receptors can be affected by the composition
and distribution of ligands on the surface of multivalent binding media-
tors [84]. Thus, the physiochemical and biological properties of the me-
diators to induce the multivalent bindings are critical to achieve
significantly strong binding events, which will ultimately increase the
capture efficiency.

2.2.2. Uniqueness of PAMAM dendrimers

Given their high surface-to-volume ratios, various types of nanopar-
ticles, such as inorganic nanoparticles, linear polymers, branched poly-
mers, dendritic polymers, and supramolecular assemblies, could
surface immobilize aEpCAM at high local density, and thus could serve
as mediators for multivalent binding, as summarized in our previous re-
view paper [85]. Among these nanoparticles, poly(amidoamine)
(PAMAM) dendrimers have been reported as an excellent mediator
for multivalent binding effect because pre-organization/orientation of
ligands, polymer backbone topology, and easy deformability of the mac-
romolecules all contribute to strong multivalent binding to cell surfaces
[86-88]. Nano-scale PAMAM dendrimers are hyperbranched, chemical-
ly well-defined, flexible, spherical macromolecules with a high number
of peripheral functional groups, thereby allowing
multifunctionalization through a variety of conjugation chemistries.
There unique aspects of the dendrimers enable precise control over cel-
lular interactions and molecular recognitions through multivalent
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binding [85,89]. Such strong binding has been more commonly used to
improve targeting efficiency of dendrimer-based drug delivery systems
[57,90,91]. Similarly, one could imagine that the advantages of en-
hanced binding avidity through dendrimers could significantly improve
the detection sensitivity and specificity particularly in capturing human
disease-related rare cells in blood (e.g., <0.1% subpopulation), such as
CTCs, which our group attempted to achieve for the first time to our
knowledge.

2.2.3. Enhanced binding strength

To create a highly sensitive surface via the multivalent binding effect,
we employed generation 7 (G7) PAMAM dendrimers due to their ade-
quate size (8 nm in diameter) and surface functional groups (512 theo-
retically) to accommodate multiple aEpCAM (around 5.5 nm in
diameter of Fc region) per dendrimer. We first tested the multivalent in-
teractions between aEpCAM-G7 PAMAM dendrimer conjugates and re-
combinant EpCAM-immobilized gold surfaces via a direct, quantitative
analysis using surface plasmon resonance (SPR). Remarkably, compared
to free aEpCAMs, the binding strength of the aEpCAMs conjugated on
dendrimers with recombinant EpCAM were enhanced by up to ~10°-
fold (Fig. 3a).

Although the aEpCAM-G7 PAMAM dendrimer conjugates dramati-
cally enhanced binding kinetics through multivalent binding, we could
not directly immobilize the conjugates on the epoxy-functionalized
glass slide due to the flexibility and peripheral multifunctional groups
of PAMAM dendrimers and 3-dimentional orientation of aEpCAM. To
induce the multivalent binding on our capture surface, a layer-by-
layer approach was used to build the dendrimer-functionalized surface
through a sequential immobilization of a linear polymer, NH,-PEG-
COOH, and partially carboxylated G7 PAMAM dendrimers onto epoxy-
functionalized glass slides [27,28,92]. The spacer PEG polymers and re-
duced amine groups of PAMAM dendrimers likely allowed to prevent
spreading of PAMAM dendrimers on the epoxy-functionalized surface
and keep dendrimers spherical after immobilized. The aEpCAM mole-
cules were finally added on top of the dendrimer-functionalized sur-
faces, likely maximizing the surface availability of aEpCAM at a high
local density, owing to the localized, multiple functional groups provid-
ed by the dendrimers.

The dendrimer-based configuration of the capture surfaces exhibit-
ed dramatically enhanced cell adhesion and binding stability of three
breast cancer cell lines (MDA-MB-361, MCF-7, and MDA-MB-231) we
tested, compared to the control surfaces with the linear PEG-aEpCAM
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conjugates (Fig. 3b). Furthermore, a significantly higher number of
bound cancer cells, particularly MDA-MB-231 cells which have lower
EpCAM expression than the other two cell lines, remained attached on
the dendrimer-coated surface after strong agitation (up to 15.2 fold),
further confirming the multivalent cell capture.[27] The non-specific
binding between HL-60 cells and a capture platform was relatively neg-
ligible, indicating that selectivity and specificity of the capture surfaces
were also improved.[27] These results validated our 2nd hypothesis,
i.e.,, dendrimer-mediated multivalent binding effect would significantly
enhance the binding kinetics between EpCAM on tumor cells and
aEpCAM used as a capture agent.

2.2.4. Connections to the literature: multivalent binding effect to enhance
the therapeutic and diagnostic efficiency

The enhanced targeting efficiency and binding strength/stability
through dendrimer-mediated multivalent binding has been used to de-
sign a wide range of potential therapeutics in Pharmacology and
targeted drug delivery systems [86,93-95]. The biological multivalent
inhibitors are responsible for modulation of potency and affinity and
have yielded quantitative measurements of binding avidities with 1-9
orders of enhancement, compared to monovalent inhibitors [84,96].

For instance in targeted drug delivery systems, G5 PAMAM dendrimers
were multifunctionalized with therapeutic (methotrexate), targeting
(folate), and imaging (radiolabel or fluorophore) agents and evaluated
in a mouse tumor xenograft model using folate receptor (FR)-overex-
pressing KB cells [90]. The targeting efficiency of folate on the multi-
functional dendrimer conjugates primarily to the tumor and liver was
trackable using the attached imaging agents over the course of 4 days,
resulting in the enhancement of therapeutic efficacy of methotrexate
as measured by a reduction in tumor volume and decreased off-target
toxicity. Another example is the 5-flurouracil (5-FU) delivery system
using folate-targeted PEGylated PAMAM dendrimers. Compared to
non-PEGylated dendrimers 5-FU (tmax = 1-2.5 h), the 5-FU-
encapsulated PEGylated dendrimers showed prolonged retention of 5-
FU (tmax = 2.5-5 h) and its anti-tumor efficacy, which was significantly
safer and more effective at decreasing tumor volume [97]. Multivalent
ligand-functionalized dendrimers have been applied successfully
in vivo for anticancer drug delivery on numerous occasions and have
been reviewed elsewhere [89,98].

Multivalent binding has not only been utilized to enhance targeting
efficacy as mentioned above, rather it has also been leveraged to devel-
op highly sensitive devices to detect target molecules and sustain the
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trapped target molecules strongly and securely for diagnostic purposes
[99]. These dendrimer-based, multivalent binding materials can be
injected for analysis in vivo for direct detection, mixed with speci-
mens in vitro, or immobilized on the surface of solid supports for
in vitro analysis. As a contrast agents for in vivo diagnosis,
dendrimers conjugated with targeting agents (e.g. antibodies,
aptamers, nucleotides, proteins, and small molecules) were used to
encapsulate or conjugate imaging agents (e.g. MRI contrast agents
or fluorescent dyes) [100-102]. A dendrimer-immobilized substrate
was used for the detection of DNA [103], toxins [104], antigens [105].
For instance, the dendrimer functionalization on substrates was able
to enhance the capture of oligomers by 2-fold, as observed in nucleic
acid hybridization experiments using fluorophore-labeled comple-
mentary oligonucleotide targets, compared to the untreated intact
substrate [106].

2.3. A combination of the two biomimetic approaches

As described above, it is obvious that the two biomimetic approaches,
cell rolling and multivalent binding, individually enhance the surface
capture of tumor cells in vitro. We then reached a next question: what
if we integrate the both approaches into a single substrate to more faithfully
mimic physiological complexity to better capture CTCs? To answer this
question, E-selectin-mediated cell rolling and dendrimer-mediated mul-
tivalent binding were engineered onto a single multifunctional platform
via micropatterning (Fig. 4a). The E-selectin-coated patterns would be
effective in pulling CTCs along with leukocytes out of the bulk flow and
induce the cell rolling behaviors on the surface. This step would substan-
tially increase the chance of the rolling cells to be interacting with the

next patterns functionalized with the CTC-specific antibody-dendrimer
conjugates, resulting in a strong binding formation between the CTCs
and the surface. Our hypothesis (hypothesis 3) was proven correct: un-
like the surface marker-dependent stationary binding of tumor cells,
leukocytes and HL-60 cells passed through the channel without station-
ary capture on the antibody pattern after rolling on the E-selectin pat-
terns. The geometry of the patterns of E-selectin and aEpCAM was
optimized in terms of angle of the E-selectin patterns and length be-
tween the E-selectin and capture antibody patterns, as previously re-
ported [28,107]. The engineered multifunctional surface exhibited a
significant enhancement in capture efficiency by up to 7-fold, compared
to the surfaces with CTC-specific antibodies only [27,28,48,92].

One can ask questions about the cell mixture included on the
rolling population, which may decrease the purity of CTCs out of
the captured cells. Those rolling cells (HL-60 for in vitro studies
and leukocytes/inflammatory cells in our clinical studies) on E-
selectin could be easily removed using a simple washing step with
PBS buffer-supplemented with Ca®?™ chelating agent ethylene
glycol-bis(3-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA)
because the interaction between E-selectin and cells is Ca® "-depen-
dent. Importantly, the washing step did not induce any noticeable
detachment of CTCs captured on the dendrimer-coated regions due
to the ultralow dissociation constants achieved through the multiva-
lent binding effect. This series of CTC isolation steps resulted in a
highly sensitive, specific capture of tumor cells and CTCs from cell
mixtures or blood samples.

We also wanted to introduce multiple antibodies into a single cap-
ture platform to effectively capture CTCs with high phenotypic hetero-
geneity [108] and biological plasticity frequently found during the
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metastatic process [109,110]. In addition to aEpCAM, we successfully
immobilized additional cancer cell-specific markers, such as human epi-
dermal growth factor receptor-2 (HER-2) [111] and prostate specific an-
tigen (PSA) [112]. To mimic the heterogeneity of CTC samples, three
tumor cell lines, MDA-PCa-2b, MCF-7, and MDA-MB-361 cells were
used to test the multifunctional surfaces. Depending on the surface ex-
pression of the ligands on each of the cell lines, differential detection
of the cells was achieved, as appeared in patterns that were pre-
determined with different capture antibodies [28]. Following the
in vitro experiments, we used tumor cell-spiked human blood samples
to demonstrate that our multifunctional surface is functional and effec-
tive capture tumor cells with the background of human blood cells. As
expected, a significantly enhanced capture of tumor cells in human
blood was achieved, up to 82% capture efficiency (~10-fold enhance-
ment than a surface with the antibodies alone) and up to 90% purity
(Fig. 4b). Taken together, these results indicate that our approach taking
advantage of cell rolling and multivalent binding significantly enhance
sensitivity and specificity of CTC capture and is expandable to multiple
antibodies, accommodating virtually any antibodies to be used as cap-
ture agents. Although our extensive data assure that the efficient cell
capture by combination of cell rolling, multivalent binding, and multiple
antibodies, the effect of multiscale patterning with more precise geom-
etries, such as lengths and angles of the protein patterns, on CTC capture
could potentially further improve the device functionality, which is the
subject of further studies.

3. Clinical significance of CTC capture and its relation to clinical
outcomes

3.1. Prognostic/therapeutic applications

Our biomimetic approach clearly enhances the detection sensitivity,
selectivity, and purity of CTC capture, compared to the control surface
using a conventional approach solely based on antibodies. The clinical
applications of this device are to monitor the change of CTCs as a bio-
marker for therapeutic effect monitoring (Section 3.1.1) and to evaluate
novel therapeutic agents under development (Section 3.1.2, Fig. 5a). For
clinical studies, three antibodies, aEpCAM, HER-2, and antibodies
against epidermal growth factor receptor (aEGFR), were chosen as a
cocktail to consistently generate the high capture efficiency as they
are commonly expressed by many of cancer cells [113].

3.1.1. Monitoring of therapeutic effects

On the biomimetic device functionalized with a cocktail of aEpCAM,
aHER-2, and aEGFR, the improved sensitivity and specificity of CTC cap-
ture enable to investigate the clinical significance of CTCs and their ki-
netic profiles in cancer patients before, during, and after treatments
[114]. We have conducted a clinical pilot study by recruiting cancer pa-
tients with diverse cohorts who undergo radiotherapy (RT) treatment
[114]. For CTC kinetic profiling, 24 patients diagnosed with rectal, cervi-
cal, prostate, or head and neck primary carcinoma were enrolled in our
pilot study. The median age of the enrolled patients was 58 years old
(range, 42-84), including 7 (29%) female and 17 (71%) male patients.
Their peripheral blood was collected prior to the radiotherapy (RT)
and at the each of radiotherapy (RT), including during the first week
of RT, mid-way through RT (Mid-RT), and during the last week of RT
(End-RT), and after completion of RT. This is in sharp contrast to previ-
ous reports using CellSearch™ where CTCs were not detected from ~1/3
of the patients with the comparable cohort [115-117]. The combined
use of multivalent binding via PAMAM dendrimers and cell rolling dra-
matically improved CTC capture sensitivity and specificity (captured
CTCs (CK+/CD45 —/DAPI +) among all captured cells), respectively.
The CTC kinetic profiles well correlated to the clinical outcomes. The
number of CTCs gradually decreased throughout RT in 18 patients
with complete clinical and/or radiographic response. In contrast, patho-
logic residual disease was found from 3 patients with elevated CTC

numbers. These results indicate that the CTC counts using our biomi-
metic platform allow reliable monitoring on CTC changes during and
after treatment, opening a potential avenue of using CTCs as a biomark-
er to monitor therapeutic efficacy.

3.1.2. Efficacy test for experimental drugs in vivo

One of the clear advantages of our approach is that it provides a mod-
ular, platform technology. The dendrimer-based CTC detection platform
was adapted for lung cancer CTCs by immobilizing aEGFR, and used to
measure murine CTCs from peripheral blood of cyclin-E overexpressing
(CEO) transgenic mice. A lack of an effective detection method for lung
CTCs presents a substantial challenge to elucidate the value of CTCs as
a diagnostic or prognostic indicator in lung cancer, particularly in non-
small cell lung cancer (NSCLC). Given that 85% of the tumor cells from
NSCLC patients overexpress epidermal growth factor receptor (EGFR)
[118], aEGFR was chosen as a capture agent for this study [52]. Following
in vitro confirmation using the murine lung cancer cell lines (a wild-type
cyclin E-driven lung cancer cell line (ED-1) and invasive ED1-SC harvest-
ed from tumor of FVB/N mice after subcutaneous injection of ED-1 cells),
CEO transgenic mice were employed as an in vivo lung tumor model to
assess specificity and sensitivity of the capture surface. Note that aber-
rant cyclin E expression is a negative prognostic indicator in the NSCLC
patients, and the CEO mice have a high incidence and rapid onset of
lung carcinogenesis [119,120]. Our surfaces functionalized with the
EGFR-dendrimer conjugates demonstrated that the numbers of CTCs in
blood from the CEO mice were significantly higher than those from the
healthy controls (on average 75.3 4+ 14.9 vs. 4.4 4+ 1.2 CTCs/100 pL of
blood, p < 0.005), indicating the high level of sensitivity of the modified
capture system. We then investigated the function of the surfaces as a
therapeutic effect monitoring tool to evaluate a new engineered antago-
nist (locked nucleic acid) against microRNA-31 (anti-miR-31). A signifi-
cant decrease in the CTC numbers from the CEO mice upon a treatment
using a novel anti-miR-31 locked nucleic acid (LNA) was observed, com-
pared to a vehicle treatment and a control-LNA treatment (p < 0.05) [52].
Our detection system also demonstrated its efficiency in monitoring
therapeutic effect of a novel CDK2/9 inhibitor in lung cancer, as shown
in our recent publication [121]. All in all, our results using the in vivo
lung cancer models confirm that our new CTC detection technology
has great potential to be used as a diagnostic and prognostic tool for
lung cancer and offers a promising way to monitor cancer progress
and responsiveness to therapeutic interventions.

3.2. Post-capture applications for research

Additional features of this device include the ability to collect
CTCs from whole blood under continuous flow without labeling or
damaging CTCs (Section 3.2.1, Fig. 5¢). Therefore, the collected
CTCs could be extracted and potentially be culture expanded to be
the subject for further analysis, such as genetic profiling and tests
for patient-specific responses to various therapeutic options
(Section 3.2.2, Fig. 5d).

3.2.1. Surface marker-dependent cell sorting

As described above, one of the unique characteristic of our
engineered platform is that the capture mechanism is solely based on
the surface expression of adhesive proteins from CTCs. The binding
strength between the CTC proteins and the antibodies immobilized on
our surfaces could be significantly augmented via dendrimers and cell
rolling, thus maximizing the overall capture efficiency [28]. This advan-
tage would enable us to exploit virtually any antibodies to achieve dif-
ferential detection of CTCs sorted based on their surface protein
profiles. As a proof-of-concept study, various cell lines, e.g., prostate
cancer (MDA-PCa-2b) and breast cancer (MDA-MB-361 and MCF-7)
cells, were tested in mixture as well as after being spiked into human
blood using a multipatterned surface with different markers. For exam-
ple, MDA-PCa-2b cells, the only PSA-positive cell line among the three
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CTC models, bound primarily on the aPSA-coated region at 91-100% pu-
rity from the cell mixtures with PSA-negative cells. MDA-MB-231 cells
were bound to the patterns coated with aHER-2 and aEpCAM, whereas
MCEF-7 cells were primarily adhered to the aEpCAM-coated region [28].
It is noteworthy that the two breast cancer cell lines, MCF-7 and MDA-
MB-231, exhibited different binding behaviors on the aHER-2 pattern,
which is not surprising as MCF-7 cells do not express a high level of
HER-2 whereas MDA-MB-231 cells do [122,123]. Interestingly, MCF-7
cells showed noticeably increased binding to aHER-2 after addition of
E-selectin, which was not observed on the same surface without E-
selectin. This is an indication that E-selectin-based cell rolling likely im-
proves the capture efficiency of antibodies even though the cells express
a low level of the corresponding surface receptors. Our results indicate
that our CTC capture platform may achieve the surface marker-
dependent tumor cell differentiation from cell mixtures and potentially
from patients' blood without cell labeling (Fig. 5c) [28,85,92].

3.2.2. In vitro culture of CTCs

Post-capture analysis and culture expansion of the captured CTCs
from blood specimens would be helpful to find CTC biomarkers and es-
tablish in vitro cell models for CTCs. Upon sensitive CTC capture, molec-
ular analysis of the extracted CTCs would be particularly important, as it
would provide genetic information to understand the invasive cancer in
detail, which will ultimately help to develop an effective treatment, and
even cure, for the debilitating metastatic cancers. To understand the mo-
lecular characteristics of CTCs, in vitro cell lines derived from clinical
CTCs could be established upon the isolation of live CTCs from metastatic
cancer patients [124,125]. After mycobacteria-free confirmation and ge-
nome mapping (characterization), the captured CTCs could be expanded
and established as cell lines for subsequent in vitro studies [124,126].
Other groups have been successful in culture expanding CTCs. For exam-
ple, CTCs isolated from breast cancer patients were expanded to ex vivo
culture. The cultured CTCs were tested drug susceptibility in vitro and in
mouse xenografts by directly inoculating the cultured CTCs to show po-
tential therapeutic targets [34]. In our previous publication, the CTCs
captured on our multifunctional platforms were still live as being
stained with live cell tracking markers, which meant negligible damage
to the cells from the capture procedure [28]. Moreover, CTCs were cap-
tured on our capture surfaces at high purity, which would allow more
selective enrichment of CTC-containing cell population. The DSRED-
transfected MDA-MB-231 cells recovered from the blood of xenografted
mice using our biomimetic platform were alive and successfully cultured
in tissue culture well plates in our pilot study (Fig. 5d).

Subsequent cell culture and single cell analysis post efficient CTC
capture would enable us to extract valuable clinical information from
individual patients, ultimately allowing personalized medicine. The crit-
ical issue is how to isolate CTCs from the surfaces without damaging the
cells. Although a simple treatment with trypsin exhibited partial success
in our case, novel methods are required to efficiently collect the cap-
tured CTCs in their intact form. The methods of high potential that
could be applicable to our devices include the approaches using
stimuli-responsive polymers that cleave upon exposure to external
stimuli, such as light, temperature, pH, and physical stress [127-129].
Additionally, enzyme-degradable materials, such as alginate hydrogel,
DNA, or aptamer, could also be used to engineer the CTC capture surface
to release the cells upon exposure to specific enzymes, such as alginate
lyase, DNase, or endonuclease, respectively [130,131]. Our next genera-
tion devices that are under investigation will incorporate such surface
release mechanisms to effectively collect the captured CTCs in their in-
tact form for a series of post-capture analyses.

4. Summary and future perspectives
Considering all the benefits that CTC-based liquid biopsy can poten-

tially provide, a highly sensitive and selective device for CTC capture
would obviously beneficial. Our recent studies in an effort of integrating

biomimicry and nanotechnology on a chip have resulted in a highly re-
liable CTC-capture platform with excellent yield and selectivity. The se-
ries of investigations using in vitro cancer cell suspension, cancer
cell-spiked blood samples, and cancer patient specimens, as
highlighted herein, clearly demonstrate the uniqueness and advan-
tages of our CTC capture technology exploiting multivalent binding
and cell rolling. Although more extensive clinical studies are still re-
quired, highly sensitive and specific CTC detection achieved using
our detection method has shown a great potential to provide valu-
able clinical insight into the progress of metastatic cancers in indi-
vidual patients, to monitor responses of patients during currently
available cancer therapy as well as novel experimental treatments.
Besides accurate CTC enumeration, our capture system can also po-
tentially provide additional features, such as label-free cell differen-
tiation and isolation of live CTCs, which would lead to molecular
profiling of the captured CTCs and ultimately to personalized medi-
cine against debilitating metastatic cancers.

To successfully translate our CTC detection technology to a clinical
setting, additional investigations are necessary. First, clinical studies
need to be expanded for various types of cancers and cancer therapies
to further validate our system. The expanded clinical studies will
allow us to confirm our device in terms of the accuracy of kinetic profil-
ing of CTC numbers and its correlation with clinical outcomes. The CTC
identification step will also have to be validated for each of the cohorts.
The current DAPI +/CD45 — /CK + standard has been reported to often
provide false values, as there are some of non-specific immunostaining
of cells [132,133]. Second, although our surface functionalization is
based on simple chemical reactions, the consistency in quality control
and device fabrication should be warranted to achieve a high level of
controllability, scalability, and reproducibility. Third, tailoring the de-
sign of the capture system to different cancer types would be required.
It is well known that the phenotypes of CTCs significantly vary depend-
ing on their origins and status of their phenotypic changes upon transi-
tion such as EMT [134,135]. A right choice of mixtures of capture agents
would be required to make our capture system effective in capturing
highly heterogeneous CTCs. Through these efforts for clinical transla-
tion, we expect our CTC device to be implemented for the routine use
in point-of-care testing and ultimately play a key role in achieving per-
sonalized treatments for cancer patients. This biomimetic nanotechnol-
ogy platform could be broadly applicable to a variety of liquid biopsies
by efficiently capturing and isolating other biomarkers, such as other
types of rare cells, exosomes, proteins, and DNA/RNA not only from pe-
ripheral blood but also from other human specimens.
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