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Abstract
Neurological conditions are the leading cause of disability and mortality combined, demanding innovative, scalable, and 
sustainable solutions. Brain health has become a global priority with adoption of the World Health Organization’s Inter-
sectoral Global Action Plan in 2022. Simultaneously, rapid advancements in artificial intelligence (AI) are revolutionizing 
neurological research and practice. This scoping review of 66 original articles explores the value of AI in neurology and brain 
health, systematizing the landscape for emergent clinical opportunities and future trends across the care trajectory: preven-
tion, risk stratification, early detection, diagnosis, management, and rehabilitation. AI’s potential to advance personalized 
precision neurology and global brain health directives hinges on resolving core challenges across four pillars—models, data, 
feasibility/equity, and regulation/innovation—through concerted pursuit of targeted recommendations. Paramount actions 
include swift, ethical, equity-focused integration of novel technologies into clinical workflows, mitigating data-related issues, 
counteracting digital inequity gaps, and establishing robust governance frameworks balancing safety and innovation.

Keywords  Artificial intelligence · Machine learning · Digital health · Neurology · Brain health · Policy · Future trends

Sebastian Voigtlaender and Sebastian F. Winter contributed equally.

 *	 Sebastian F. Winter 
	 sfwinter@mgh.harvard.edu

1	 Systems Neuroscience Division, Max-Planck-Institute 
for Biological Cybernetics, Tübingen, Germany

2	 Virtual Diagnostics Team, QuantCo Inc., Cambridge, MA, 
USA

3	 Faculty of Medicine, Ruprecht-Karls-University, Heidelberg, 
Germany

4	 Graduate Center of Medicine and Health, Technical 
University Munich, Munich, Germany

5	 Department of Electrical Engineering and Computer Science, 
Massachusetts Institute of Technology, Cambridge, MA, 
USA

6	 NVIDIA, Zurich, Switzerland
7	 Department of Radiation Oncology, Duke University Medical 

Center, Durham, NC, USA
8	 Department of Neurosurgery, 

Ludwig-Maximilians-University and University Hospital 
Munich, Munich, Germany

9	 Department of Neurology, Massachusetts General Hospital 
and Harvard Medical School, Boston, MA, USA

10	 Department of Neurology, Division of Clinical Neuroscience, 
Oslo University Hospital, Oslo, Norway

11	 National Institute for Stroke and Applied Neurosciences, 
Auckland University of Technology, Auckland, New Zealand

12	 Center for Genomics and Precision Medicine, College 
of Medicine, University of Ibadan, Ibadan, Nigeria

13	 Neurology Unit, Department of Medicine, University 
of Ibadan, Ibadan, Nigeria

14	 Blossom Specialist Medical Center, Ibadan, Nigeria
15	 Lebanese American University of Beirut, Beirut, Lebanon
16	 Department of Behavioral and Social Sciences, Brown 

University, Providence, RI, USA
17	 Human Brain Project, European Union, Brussels, Belgium
18	 Duke University School of Law, Durham, NC, USA
19	 Google Research, Mountain View, CA, USA

http://orcid.org/0000-0001-8836-0235
http://crossmark.crossref.org/dialog/?doi=10.1007/s00415-024-12220-8&domain=pdf


	 Journal of Neurology

Background

Despite remarkable advancements in biomedical research 
and technology, the prevention, diagnosis, management, 
and rehabilitation of neurological conditions remain a crit-
ical unmet need. Over the last three decades, neurological 
conditions have become the primary cause of disability 
and mortality combined [1], with 276 million disability-
adjusted life years (DALYs), 9 million deaths in 2016 [2], 
and a 50% projected global increase in DALYs until 2040 
[2]. This escalating burden is propelled by demographic 
change, lifestyle shifts, pollution, climate change, and 
post-COVID conditions [3]. Low- and middle-income 
countries (LMICs) are disproportionately affected [4]. 
The socioeconomic sequelae attributed to neurological 
disability are enormous.

Encouragingly, the year 2022 marked an inflection point 
for the global neurology community: recent milestones in 
clinical neuroscience—cutting across science, medicine, 
and the policy arena—are generating what was termed a 
‘neurology revolution’ [5]. Emerging neurotechnologies 
and breakthrough discoveries have enabled recording, 
decoding, and modulating neural activity at unprecedented 
spatiotemporal resolution [6, 7], the introduction of bio-
compatible brain–computer interfaces (BCIs) for motor, 
somatosensory, and cognitive neuroprosthetics [8], and 
the decoding of large tumor-synaptic networks [9] with 
emergence of cancer neuroscience, [10] among others.

From a global health policy perspective, the World 
Health Organization (WHO)’s Intersectoral Global 
Action Plan on Epilepsy and other Neurological Disor-
ders 2022–31 (IGAP) [4] and WHO Brain Health Initiative 
have anchored neurological conditions as a top priority on 
the global policy agenda, calling for synergistic intersecto-
ral collaboration to tackle the global neurological burden. 
The neurology community is increasingly uniting around 
the brain health [11] paradigm and its value for human 
advancement [12], including economic prosperity, societal 
cohesion, thriving political institutions, and environmental 
sustainability [13, 14].

Concurrently, artificial intelligence (AI), i.e., ‘intelli-
gence demonstrated by machines’ [15], and its prominent 
subdiscipline machine learning (ML), i.e., optimizing 
mathematical models to predict variables of interest from 
data, are evolving at an unprecedented pace. Recently, 
medical AI has been moving away from task-specific mod-
els trained on ‘conventional’ clinical data [16] to utilizing 
omic, wearable, or neural activity data, often equipped 
with data-specific inductive biases [17], or generalist 
Foundation Models (FMs) [18] (cf. Glossary) that repre-
sent distributions over vast, diverse, multimodal datasets. 
FMs such as MedPaLM [19] and MedPaLM multimodal 

[20] are the first generalist biomedical models of their 
kind, achieving state-of-the-art performance and zero-
shot generalization capabilities across a wide range of 
medical tasks (cf. Panel I) [19, 20]. These developments 
are paired with an ever-growing supply of diverse medi-
cal data modalities [21] (molecular, imaging, biosensors, 
electronic health records, neural activity, etc.). Addition-
ally, cross-fertilization between the neurosciences and AI, 
including the novel discipline of NeuroAI, [22] is rapidly 
advancing both neuroscientific and AI innovation (cf. 
Panel II) [22, 23].

AI is poised to revolutionize healthcare [24] and will 
advance the global IGAP and brain health agendas. How-
ever, despite its vast transformative potential for biomedi-
cine, widespread use of AI in medical research and clinical 
practice is still lagging. Several important technical, struc-
tural, societal, and ethical challenges must be resolved to 
catalyze uptake of these novel techniques among neurology 
stakeholders [16, 25, 26].

This review explores the value of AI in neurology and 
brain health, systematizing the landscape, focusing on trends 
and transformative future directions. Emerging AI applica-
tions for improved prevention and risk stratification, early 
detection and diagnosis, and management and rehabilita-
tion of neurological conditions are contextualized with key 
opportunities, critical challenges, and policy implications to 
ensure ethical, safe, and sustainable embedding of AI tech-
nology into the global neurology infrastructure.

Panel I. A brief technical overview of artificial 
intelligence and machine learning

Artificial intelligence (AI) can be defined as ‘intelligence 
demonstrated by machines’ [15]. Machine learning is a 
proper subfield of AI (although they are often used quasi-
synonymously) and deep learning is a proper subfield of 
machine learning.

Formally, every machine learning problem is an opti-
mization problem, where a model is optimized according 
to a predefined performance metric (the ‘loss function’ 
or ‘cost function’) that measures how well the model 
solves a given task. The machine learning model itself 
is a mathematical object, in most cases a function with 
parameters, that maps given data to a desired output vari-
able. The procedure of optimizing the given function is 
referred to as ‘training’ or ‘learning’. The distinction 
between ‘supervised learning’ and ‘unsupervised learn-
ing’ (and variants thereof, e.g., ‘semi-supervised learn-
ing’) refers to the presence or absence of labels in the 
data, respectively. ‘Reinforcement learning’ is the pro-
cess of optimizing a model to emulate decision-making 
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by means of reward and punishment (similar to operant 
learning in animal models). Reinforcement learning is 
specifically apt to solve sophisticated planning problems, 
such as chess.

In medical AI, there is a small array of a dozen or so 
model types that are used in the overwhelming majority 
of studies (to which we refer to as the ‘quasi-canonical’ 
suite of model architectures in the main text), some of 
which are logistic regression, Decision Tree, naïve Bayes, 
Support Vector Machine, Random Forest, XGBoost, and 
artificial neural networks (ANNs). ‘Deep learning’ sim-
ply means optimizing ANNs with one or more hidden 
layers.

Models that parametrize (conditional) probability dis-
tributions over a data space are called ‘generative mod-
els’, as they allow sampling novel data points from the 
distribution. For instance, an ANN with many parameters 
(on the order of billions or more) that parametrizes a con-
ditional probability distribution over embeddings of word 
pieces, called ‘tokens’, conditioned on previous tokens, 
is called a Large Language Model (LLM). These models 
typically require lots of training data.

If the data domain is highly structured (e.g., repre-
senting physical processes governed by differential equa-
tions) incorporating prior assumptions about the domain 
structure, so-called ‘inductive biases’, into the model 
architecture can benefit training efficiency and perfor-
mance. Foundation Models (FMs) are large-scale genera-
tive models, trained in an unsupervised manner on large 
datasets, and consecutively fine-tuned on downstream 
tasks. FMs often demonstrate superior performance 
across a range of tasks compared to specialist models, 
and can routinely adapt to unseen tasks without further 
fine-tuning. Their capabilities, and novel techniques to 
adapt them to certain tasks, such as in-context learning, 
are actively researched.

Panel II. Moonshot perspective: potential future 
developments for AI in neurology

Here, we highlight seminal “moonshot” ideas that current 
developments in medical AI might develop into or that 
have been proposed, but have not yet seen the light of day.

Generalist ‘neurologist in the pocket’. Moor et al. have 
hypothesized future emergence of ‘generalist medical AI’ 
(GMAI) [26]—models developed on large, extremely 
diverse datasets (e.g., text, medical images, health 
records, omics, protein graphs, EEGs), able to execute 
a wide range of tasks without additional fine-tuning on 
labeled data. A conceivable extension to this idea would 
be generalist neurology-specific AI (GNAI), trained on 
general health- and neurology-specific data, including 

relevant molecular pathways, neural activity data, and 
specific pathologies. ‘Embodied’ GNAI models are con-
ceivable as the next step to this scheme, where gener-
alist agents are trained on task planning and execution 
for optimal control and flexible interaction with the out-
side world [22]. Conceivable applications include direct 
interaction with patients, healthcare providers, and soft-
ware/instruments in a hospital environment, and seam-
less interfacing between the ‘patient brain’ and external 
devices, e.g., neuroprosthetics.

Biophysical brain modeling. AI has proven valuable 
for basic scientific discovery, including data collection 
and analysis, representation learning from biophysical 
priors, learning solutions to differential equations or 
functionals between solution spaces, scientific hypoth-
esis generation in differentiable hypothesis spaces, and 
optimizing simulations, among others [17]. With the 
advent of spatial multi-omics, [28] whole-brain record-
ings in freely behaving animals, and advanced techniques 
for neural population-level readout and control, a wealth 
of novel, yet largely unused data could be leveraged 
to explore novel AI-generated hypotheses. These may 
enable discovery of novel biomolecular pathways under-
pinning neural signaling, plasticity, and disease patho-
genesis, as well as spatiotemporal computation of large-
scale biological neural networks. Such advances could 
ultimately lead to a high-fidelity, individualized ‘virtual 
patient brain’ [66] augmenting neurology at every step of 
the care trajectory.

NeuroAI. The AI-neurosciences nexus has long history 
of cross-pollination, [23] resulting e.g., in the develop-
ment of artificial neural networks, foundational principles 
behind reinforcement learning (inspired by operant learn-
ing in animals), and artificial attention. Some research-
ers have posited that achieving human-like AI critically 
hinges on “matching the perceptual and motor abilities of 
animals” [22] used in embodied interaction with the natu-
ral world. Zador et al. [22] hence proposed the ‘embodied 
Turing test’, an extension to the original Turing test. To 
this end, overcoming critical weak points of current AI 
(e.g., sensorimotor capabilities, dealing with uncertainty 
and extremely limited information) needs natural intel-
ligence as a template. Indeed, biological neural networks 
have a myriad of properties currently missing in their arti-
ficial counterparts: discrete, sparse neural codes; non-lin-
ear dendritic computation; local, sparse synaptic learning 
rules; hierarchical, controlled input and output orchestra-
tion; massively parallel processing and multiplexing; var-
ious memory types across different timescales, to name 
just a few. Critically, natural neural networks operate on 
the basis of finely orchestrated, persistent internal states. 
In contrast, the most performant models to-date are not 
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stateful, mainly because stateful ANNs cannot perform 
effective temporal credit assignment, that is, roughly, the 
ability to attribute outcomes to specific past events effec-
tively [22]. Understanding and emulating computational 
principles behind these computations may advance AI 
far beyond its capabilities today, and incur robustness to 
perturbations, novel situations, uncertainty, energy effi-
ciency, and free sensorimotor interaction with the world. 
This, in turn, can cross-fertilize biophysical modeling and 
neurology-specific FMs, endowing them with human-like 
capabilities for flexible, natural interaction.

Search strategy and selection criteria

Search strategy

Following the PRISMA extension for Scoping Reviews 
(PRISMA-ScR) guidelines, we mapped the current body of 
literature on AI applications in neurology and brain health 
(Sect.   3). After defining MeSH terms (cf. Supplemen-
tary Material), a systematic search for studies published 
between January 1, 2021, and December 1, 2023, was con-
ducted across PubMed/MEDLINE, Embase, and Google 
Scholar. We built a PubMed API wrapper for automated 
title, abstract, publication year, authors, journal, and DOI 
retrieval. Embase and Google Scholar were searched manu-
ally, along with targeted manual searches of published and 
gray literature (cf. Supplementary Material).

Selection criteria

Publications were screened for and selected based on, meth-
odological rigor, journal impact, study quality, and utiliza-
tion of recent AI technologies with transformative potential 
in neurology.

Data extraction and collation

We developed a Python-based search tool and a wrapper 
around the OpenAI API to remove duplicates, structure 
retrieved literature, and extract motivation, data, machine 
learning technique, and results from paper titles and 
abstracts. Results were tabulated for publication selection 
and content accuracy was corroborated via manual checks, 
resulting in a total of 66 original articles to be included for 
in-depth review. The underlying code for this study is avail-
able at https://​github.​com/​sebvo​igtla​ender/​search_​and_​struc​
ture.

Value of AI in clinical neurology and brain 
health

Machine learning applications permeate biomedical/neuro-
scientific research and retrospective clinical studies [16], yet 
clinical validation and bench-to-bedside translation remain 
limited [25]. Still, early AI-assisted tools and devices with 
clinical use cases across several neurological disciplines are 
emerging (cf. Table 1). Simultaneously, the computational 
integration of high-dimensional molecular, neurophysiologi-
cal, neural activity, and clinical data has led to an increas-
ingly systemic understanding of disease heterogeneity and 
pathogenesis at molecular, cellular, and tissue levels [27, 
28], specifically in brain cancers [29] and neurodegenerative 
diseases [30].

Increased personalization of prevention, diagnosis, and 
intervention along the neurological care trajectory paves 
the way toward personalized precision neurology. This 
entails discovery of predictive, diagnostic, and prognostic 
biomarkers, patient subtyping for risk stratification and tar-
geted interventions, translational utilization of routine clini-
cal data, and advanced understanding of pathomechanisms 
underpinning disease states. Herein, we delineate use cases 
of medical AI along the neurological care trajectory, focus-
ing on recent developments that bear transformative poten-
tial (cf. Fig. 1).

Prevention and risk stratification

Identification, optimization, and scaling of effective preven-
tion and brain health promotion strategies are essential to 
tackle the growing neurological disease burden [52]. Timely 
initiation of preventive measures is markedly enhanced by 
AI-based individualized risk prediction, involving monitor-
ing and risk stratification via predictive biomarkers.

Monitoring

Stroke accounts for the majority of neurological DALYs, 
but is largely preventable, if at-risk individuals are identi-
fied and preventive behaviors are enacted [53]. Miniaturized 
biosensors embedded in wearable devices, like wristbands, 
smartphones, or rings, enable noninvasive collection of clin-
ical parameters for preventative purposes. Examples include 
heart rate/rhythm monitoring, accelerometry, and photop-
lethysmography (e.g., for arrhythmia or hypertension detec-
tion) [54]. Such AI-based monitoring may yield personaliza-
ble recommendations for preventative health behaviors [55]. 
This opportunity for cost-effective individualized prevention 
may substantially support scalable brain health promotion 
strategies (cf. IGAP strategic objective 3) [4]. In addition, 
wearable-derived health insights may enable decentralized 

https://github.com/sebvoigtlaender/search_and_structure
https://github.com/sebvoigtlaender/search_and_structure
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patient monitoring (at home or in ‘site-less’ clinical trials) 
[25, 27], ensuring easier health surveillance of groups in 
rural/remote areas lacking crucial health infrastructure.

Predictive biomarkers

Various neurological conditions exhibit significant poly-
genicity [56], potentially precluding statistical analyses, 
given high data dimensionality and nonlinear gene–gene 

Table 1   The neurologist’s ‘AI Armamentarium’

Selected FDA-cleared and potentially impactful, non-FDA-cleared AI-powered medical devices, stratified by neurological subdisciplines. AD 
Alzheimer’s disease; AI artificial intelligence; ALS amyotrophic lateral sclerosis; ANN artificial neural network; ASD autism spectrum disorder; 
BCI brain–computer interface; CNN convolutional neural network; CT computed tomography; CTA​ computed tomography angiography; FDA 
US Food and Drug Administration; EEG electroencephalogram; EHR electronic health record; LLM large language model; MRI magnetic reso-
nance imaging; PD Parkinson’s disease
*Disclaimer: This list is non-exhaustive and does not constitute device or company endorsement by the authors

Discipline Device and description

Neurovascular Rapid ASPECTS, iSchemaView, Inc.: Brain tissue abnormality detection in CT image data [31]; Albers et al. uti-
lized Rapid ASPECTS for early detection of brain ischemia in patients with stroke and large hemispheric infarcts 
[32]

StrokeSENS LVO, Circle Neurovascular Imaging, Inc.: Binary classifier for large vessel occlusion detection in head 
CTA images for diagnostic assistance [33]

FastStroke, CT Perfusion 4D, GE Medical Systems SCS: Computer-aided visualization of head and neck vascu-
lature from CT images across different scans; CNN-based CT perfusion image analysis to calculate perfusion-
related parameters (e.g., regional blood flow) [34]

Neurodegenerative & 
movement disorders

NeuroRPM, New Touch Digital, Inc.: Quantification of movement disorder symptoms (tremor, bradykinesia, and 
dyskinesia) during wake periods in adult patients with PD

Neurophet AQUA, NEUROPHET, Inc.: MRI segmentation, labeling, automated morphometric report generation 
[35]

Cognixion ONE Axon, Cognixion, Inc.: Wearable AI-powered assistant for home automation control and assistive 
communication; usable without eye-tracking via BCI for patients with locked-in syndrome and/or ALS [36] (not 
FDA-cleared, but received breakthrough device designation [37])

Neuroimmunology iQ-solutions, Sydney Neuroimaging Analysis Centre: ANN-based analysis of brain MRI for multiple sclerosis moni-
toring in terms of lesion activity and quantitative brain volumetric measures; case-level sensitivity 0.93 compared 
to 0.58 in standard radiology reports [38] (not FDA-cleared)

Neuro-oncology VBrain, Vysioneer, Inc.: Radiation therapy treatment planning assistance via segmentation of diagnosed brain 
tumors from axial T1 contrast-enhanced MRI using deep ANNs: gross tumor volume estimation [39]; Wang et al. 
[40] assessed the performance of the algorithm for detection of brain metastases (sensitivity 0.96 for metastases 
5 mm or greater)

Epilepsy Persyst 15 EEG Review and Analysis Software, Persyst Development Corporation: EEG recording analysis and 
monitoring seizure detection in adults and infants, visualization (MRI-EEG overlay), detection of wake-sleep 
states, quantitative EEG artifact reduction [41]; Ganguly et al. [42] assessed the algorithms’ accuracy in a critical 
care setting, demonstrating a modest added value (sensitivity 0.50 at the individual seizure level)

Ceribell Status Epilepticus Monitor, Ceribell, Inc.: Electrographic Status Epilepticus diagnosis from EEG wave-
forms [43]

Neurotraumatology Brainscope TBI, Brainscope Company, Inc.: Diagnostic support in patients with closed head injury via Concussion 
Index based on EEG, neurocognitive measures, and clinical symptoms (Estimating likelihood of structural brain 
injury visible on head CT, EEG-based measure of brain function) [44]

EyeBOX (Model EBX-4), Oculogica, Inc.: Diagnosis of mild traumatic brain injury within one week of head injury 
via automated analysis of eye movements [45]

Neurosurgical navigation 7D Surgical System Cranial Biopsy and Ventricular Catheter Placement Application, 7D Surgical, Inc.: Stereotaxic 
image guidance system for spatial positioning and orientation of neurosurgical instruments during cranial surgery 
[46]

Neuropsychology EarliPoint System, EarliTec Diagnostics, Inc.: ASD diagnosis based on eye-tracking data [47]
Cognoa ASD Diagnosis Aid, Cognoa, Inc.: Diagnostic aid for ASD in infants and children [48]

Omics Squidpy [49]: Python framework for integrative multi-omics data analysis, e.g., graph-based pattern identification in 
spatial transcriptomics data, ANN-based image analysis, etc. (not FDA-cleared)

Conversational medical AI AMIE (Articulate Medical Intelligence Explorer) [50]: LLM-based history-taking, diagnosis, management reason-
ing, and communication (not FDA-cleared)

Medical documentation Dragon Ambient eXperience (DAX™) Copilot, Nuance Communications, Inc.: LLM-based software for assisted 
medical documentation via speech recognition, specifically in the EHR; company claims to reduce medical docu-
mentation burden by up to 50% [51] (not FDA-cleared)
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interactions [57]. Polygenic risk score (PRS) prediction by 
deep neural networks, trained on genomic, imaging, and 
clinical data, constitutes a viable alternative to conventional 
PRSs, e.g., for Alzheimer’s disease (AD) [57] and stroke 
[58]. For instance, a convolutional neural network (CNN) 
was trained on retinal fundus images to predict retinal age, 
showing that predicted retinal age gap (predicted retinal 
age–chronological age) is associated with a 4% stroke risk 
increase, performing comparably to established risk factor-
based models (AUC 0.68 vs. AUC 0.66) [58]. Additionally, 
model features can be analyzed to uncover single-nucleo-
tide polymorphism–endophenotype associations, allowing 
insight into disease etiology [57].

Early detection and diagnosis

Early detection and diagnosis of neurological conditions 
remains challenging and resource-intensive due to subtle, 
heterogeneous early clinical manifestations, high rates of 
misdiagnosis, and therapeutic delays, exacerbated by lim-
ited access to care and neurological workforce paucity in 
low-resource settings [59]. Several of these challenges are 
potentially addressable with advances in neuroimaging/radi-
omics and other diagnostic biomarkers, multi-omics, and 
generative AI.

Neuroimaging and radiomics

Deep learning has demonstrated expert-level performance 
on various medical image classification and segmentation 
tasks [16]. This includes predicting the presence/severity 
of a neurological condition or localizing regions of interest, 
e.g., as demonstrated in stroke diagnostics for lesion detec-
tion in diffusion-weighted MR imaging [60] or vessel occlu-
sion detection in CT-angiography [61]. Radiomics—the 
extraction of high-dimensional quantitative medical image 
descriptors [62]—has seen a surge of interest in neuroradiol-
ogy: radiomic features are used for noninvasive identifica-
tion of prognostic biomarkers, automated response assess-
ment, differentiation between treatment-related changes and 
tumor progression [62] (e.g., pseudoprogression detection 
in glioblastoma) [63], temporal lobe epilepsy onset/dura-
tion prediction (using cortical atrophy in MRI-based brain 
morphology data) [64], and identification of incident car-
diovascular events (atrial fibrillation, heart failure, myocar-
dial infarction, stroke) [65]. Specifically, in neuro-oncology, 
radiomic features are used translationally to infer genetic 
[66], epigenetic [67], or transcriptomic biomarkers [68], 
advancing molecular characterization of pathologies from 
images alone, e.g., for glioma subtyping, using a CNN to 
predict isocitrate dehydrogenase (IDH) mutation status (a 
key diagnostic marker in gliomas) from preoperative MR 
images (AUC 0.88) [67]. However, for effective clinical use, 

Fig. 1   Relational graph between main data modalities (left icons), 
types of AI (middle icons), and clinical applications (right icons). 
Arrows signal the main connections. Normal arrows signify a strong 
connection, while dotted arrows signify a weak or hypothesized con-

nection. More details on AI use cases in neurology and brain health 
can be found in Tables 1 and 2. AI artificial intelligence; BCI brain–
computer interface
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radiomics signatures require further tissue-based pathologi-
cal validation [69].

Biomarkers beyond neuroimaging

Non-imaging data modalities are potentially more readily 
available and can offer complementary insight in specific 
clinical scenarios. Acoustic signals, such as nocturnal 
breathing signals, can enable remote detection and severity 
assessment of Parkinson’s disease (PD) [70], and motion 
capture suit data are utilized to predict Friedreich’s ataxia 
progression, a rare neurological condition, demonstrating 
superior predictive accuracy compared to standard clini-
cal assessments [71]. Monitoring longitudinal data via 
wearables has proved especially valuable in time-critical 
applications, e.g., seizure detection in epilepsy [72] or dis-
ease onset prediction (e.g., in PD using wearable-recorded 
accelerometry data) [73], at times surpassing models 
trained on genomic, blood biochemistry, or lifestyle fac-
tor data [73].

Furthermore, ML methods can detect relevant patterns 
not amenable to human detection in clinically collected 
data, e.g., questionnaires or retinal photographs. For 
example, an ensemble-based discriminative model pre-
dicted PD diagnosis several years into the future, using 
only questionnaires and noninvasive clinical tests (3 years 
AUC 0.82; 5 years AUC 0.77) [74]. Another study dem-
onstrated AI-based retinal photograph interpretation alone 
as sufficient for accurate AD detection (AUC 0.73–0.91) 
[75]. These examples highlight the potential of AI-based 
utilization of clinically or wearable-collected data to ame-
liorate critical constraints in low-resource settings, includ-
ing LMICs, where collection/utilization of such data might 
present a cost-effective alternative to diagnostic proce-
dures heavily reliant on specialist equipment/personnel.

Translational omics and modeling disease mechanisms

Computational integration of multimodal omics can offer 
meaningful insights into neurological disease mechanisms, 
enabling identification of common omic signatures for 
genetically distinct disease subtypes (e.g., in amyotrophic 
lateral sclerosis) [76]. Neuron-type-specific molecular 
profiles can be integrated with genomic data, e.g., using 
probabilistic models: a recent study showed that AI-based 
genetic characterization of vulnerable neuron subtypes in 
AD can lead to re-ranking of known genome-wide asso-
ciation study (cf. Glossary) loci, ranking microtubule-
associated protein tau first [30].

While molecular-genetic risk factors are impli-
cated in pathogenesis of many neurological conditions, 
detailed molecular data are rarely collected without prior 

indication; their clinical utility not only depends on pre-
dictive value, but also on cost and effort required to obtain 
them. MLs’ ‘data type agnosticism’ is conducive to utili-
zation of diverse data types for diagnostic biomarker dis-
covery and data gap mitigation via cross-modal inference. 
For example, a CNN trained on stimulated Raman histol-
ogy (cf. Glossary) could distinguish molecular subtypes in 
diffuse gliomas (AUC 0.93) by predicting key molecular 
markers (IDH mutation, 1p19q co-deletion, ATRX muta-
tion) [77]. Similarly, a random forest (cf. Glossary) trained 
on DNA methylation data accurately predicted somatic 
alterations in gliomas (AUC 0.99–1.0), enabling direct 
phenotype inference from epigenetic signatures, bypass-
ing the need for multiple, separate genomic assays [29].

Foundation models

With most medical AI studies focused on narrow tasks uti-
lizing only few data types, recent work has highlighted the 
need for multimodal, task-flexible approaches [18, 26, 27]. 
Alongside fully generalist models like MedPaLM [19, 20], 
smaller FMs for specific applications are emerging: Med-
SAM [78] can segment medical images (e.g., brain MRI), 
and RETFound [79] was pretrained on 1.6 million unlabeled 
retinal images and fine-tuned for 3-year incidence prediction 
of ischemic stroke (AUC 0.75) and PD (AUC 0.67), among 
others. Another FM trained on electronic health record data 
could generate artificial clinical text data indistinguishable 
from real clinical text [80]. These examples underscore FMs’ 
utility for domain- or data-specific applications or admin-
istrative use cases, e.g., reducing medical documentation 
burden [81]. To our knowledge, no exclusively neurology-
specific FM to-date exists.

Treatment, management, and rehabilitation

The past decades have seen significant therapeutic advance-
ments in neurology, including entirely new treatment ave-
nues (e.g., biologicals, immunotherapies), approval of effec-
tive therapeutic and disease-modifying agents, tailored to 
specific clinical and molecular-genetic patient characteris-
tics, and comprehensive, data-driven mechanistic models 
of the brain in health and disease [82]. AI can markedly 
accelerate personalized precision neurology, especially prog-
nostication, treatment planning and efficacy prediction, and 
neurorehabilitation.

Personalized treatment planning and guidance

ML-driven integrative omics can catalyze a ‘pathway to 
personalization’ by revealing potential therapeutic targets. 
For instance, a semi-supervised Support Vector Machine 
(cf. Glossary) was used to uncover glioblastoma-associated 
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master kinases PKCδ and DNA-PKcs as key therapeutic tar-
gets in functionally distinct tumor subtypes [83]. Similarly, 
combined XGBoost regression (cf. Glossary) and gene set 
enrichment analyses could delineate intratumoral glioblas-
toma heterogeneity, revealing distinct proteomic programs 
associated with differential drug sensitivities [84]. High 
failure rates and lengthy processes in CNS drug discovery, 
stemming from complex pathoetiology, blood–brain-barrier 
constraints, and pharmacoresistance, identify a strong future 
role for AI in streamlining all stages from target validation to 
clinical trials, addressing neurology-specific drug develop-
ment challenges [85].

Data-driven computational models acting as virtual 
replicas of patients, so-called ‘digital twins’ [86], can be 
used to simulate dynamics of neurological conditions or 
system–intervention responses. Recent work has high-
lighted digital twins to support clinical decision-making 
in neurological conditions, like epilepsy [87]. Jirsa et al. 
elucidated the future role of virtual brains—simulations 
constructed from functional and structural brain imaging 
data tuned to individual patients—in estimating the extent 
and organization of the epileptogenic zone for surgical 
treatment planning in drug-resistant focal epilepsy [87]. 
The virtual brain paradigm can be extrapolated to other 
neurological conditions, as large-scale neural dynamics 
and abilities to simulate and interpret specific activity pat-
terns evolve.

Response, progression, and outcome prediction

Alongside guiding treatment planning, AI-based methods 
can offer personalized prognostication or post hoc treat-
ment efficacy estimation. For example, a deep learning 
model was trained to predict spatially resolved transcrip-
tional glioblastoma subtypes from histology images, link-
ing predicted tumor architecture to prognosis [88]. Another 
translational study trained an ensemble of artificial neural 
networks (ANNs) on clinical and MR images to estimate the 
conditional average treatment effect (cf. Glossary) of anti-
CD20 antibodies and the immunomodulator laquinimod in 
multiple sclerosis treatment for time-to-confirmed-disability 
progression [89].

AI-guided personalized outcome prediction also has 
manifold applications in the neurological intensive care 
unit (ICU) setting, e.g., in patients with acute cervical spinal 
cord injury (SCI) [90], acute brain injury (related to cardiac 
arrest, traumatic brain injury (TBI), or hemorrhage) [91], 
or stroke (acute, subacute, and chronic) [92]. For example, 
AI-based electroencephalography (EEG) analysis could 
detect spoken command-induced brain activation patterns 
in clinically unresponsive patients with TBI, and correlate 
responses to functional outcomes at 12 months [91].

Ensuring optimal patient management involves miti-
gating treatment-related adverse effects (AEs) as much as 
optimizing treatment strategies [93]: ML-based detection 
of functional connectivity abnormalities can facilitate thera-
peutic target selection for repetitive transcranial magnetic 
stimulation in the treatment of neurocognitive dysfunction 
post-craniotomy, leading to significantly improved quality 
of life, functional status, and symptoms [94]. Other research 
investigated glioblastoma treatment response, demonstrating 
effective AI-based differentiation between true progression 
and treatment-related AEs, i.e., pseudoprogression, using 
response assessment in neuro-oncology (RANO) criteria 
along with a combination of clinical, radiomic, and epig-
enomic data (AUC 0.80) [95]. The application of ML to AE 
mitigation remains infrequent.

Function restoration and neurorehabilitation

Neurodegenerative diseases, stroke, and injuries (SCI, TBI) 
can cause significant motor, somatosensory, and/or cogni-
tive deficits. Restoration of motor function (e.g., speech 
synthesis) [96, 97], somatosensory function, and, to some 
extent, cognitive function, has been enabled by remarkable 
advances in neurotechnologies, including neuroprosthetics 
and BCIs [8]. Techniques to record and decode high-dimen-
sional neural population activity [6] have yielded (intracor-
tical) BCIs: a recurrent neural network enabled attempted 
handwriting movement-to-text translation in SCI-paralyzed 
patients [98]; similarly, representations of perceived speech 
were decodable from noninvasive brain recordings (e.g., 
using a model trained with contrastive learning (cf. Glos-
sary) on EEG/MEG [7] or a FM on fMRI [99]).

Concurrently, the ability to manipulate neural activity 
may catalyze next-generation neuroprostheses, potentially 
enabling restoration/alteration of higher-order cognitive 
functions mediated by distributed, large-scale neural net-
works [8]. Scaling such technology may significantly con-
tribute to optimization of brain health across the life course: 
early and effective neurorehabilitation is critical to restore 
personal agency and autonomy, social connection, and soci-
etal participation. However, controlling neural activity is 
prone to malicious manipulation requiring ethical guardrails 
to secure rights to mental privacy and cognitive liberty (cf. 
Glossary) [100].

Opportunities, challenges, and future 
directions

AI could usher in a new era of personalized precision neurol-
ogy, a field grappling with a public health crisis marked by a 
massive growing burden of neurological conditions world-
wide. Unlocking this potential requires effectively leveraging 
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AI’s strengths while resolving critical challenges across four 
pillars: models (technical challenges, FMs, biophysical mod-
eling), data (quality, collection, use), feasibility and equity 
(trust, AI–user interaction, digital health equity), as well as 
regulation and innovation (stakeholder alignment, co-crea-
tion, policy). While these pillars pertain to medical AI per 
se, [16, 18, 25–27] neurology-specific considerations and 
future directions can be delineated. This includes AI inter-
ventions (and policies) directed at overcoming core issues 
persisting in clinical and global neurology (cf. Table 2).

Models: opportunities and technical limitations

ML models suffer from prediction error, uncertainty, and 
a proclivity to underperform on ‘out-of-distribution’ data. 
Lack of generalizability can hinder clinical validation, e.g., 
as demonstrated for AI-derived meningioma classification 
systems [108]. To ensure robust performance, end-to-end 
deployment studies must therefore include calibration, 
uncertainty estimation, and generalizability evaluation; 
guidelines for end-to-end co-creation have been detailed by 
Tomašev et al. [101] Furthermore, model performance criti-
cally depends on data quality, as models trained on biased 

Table 2   Mapping the field

This table details the clinical or global health core challenges and associated opportunities in terms of applicable AI-based techniques, existing 
frameworks, or recommendations. AI  artificial intelligence; BCI brain–computer interface; CATE conditional average treatment effect; FDA 
food and drug administration; FM foundation model; LMIC low- and middle-income country; PRS polygenic risk score; SNP single-nucleotide 
polymorphism

Clinical/global neurology challenge Recommended techniques/policy implications

High disease burden of preventable neurological diseases [53]
Lack of healthy behaviors and health literacy

Prevention by personalized risk stratification/wearable-based monitoring 
[54]

Site-less/remote multicentered clinical trials [25]
Predictive biomarker discovery, AI-based PRS [57] and SNP-phenotype 

association
Subtle or ambiguous early clinical manifestation of many neurological 

conditions [59]
Imprecise, non-personalized diagnostics

Prognostic and diagnostic biomarker discovery
Tissue-based validation of radiomic/radio-genomic/modeling-based 

image analysis [62]
Translational AI-based medical image interpretation [66, 67]
Computational multi-omics [27], biophysical/neurophysiological models 

[87]
Neurological workforce paucity in rural areas/LMICs
Precise, personalized diagnosis unaffordable or unavailable

Affordable prognosis/diagnosis using imaging, clinically collected [74, 
79] or attainable biosensor data [72]

AI-based diagnostic assistants to reduce specialist need; locally 
deployed FMs

‘Broadband’ therapeutic strategies not tailored to individual patient 
needs

No causal treatment available for most neurological conditions

Discovery of therapeutic targets [83], mechanistic disease modeling [82]
AI-based treatment planning [87]
Treatment response prediction, causal modeling (e.g., CATE) [89]
Mitigate treatment-related AEs [95, 101]
AI-powered drug discovery, clinical trials [25]

High disease burden in terms of DALYs [1]; rehabilitation and resto-
ration of neurological function difficult or impossible

Outcome prediction, resource triaging
BCI-based neurorehabilitation [96–98]
Effective prevention and rehabilitation, leading to greater societal 

participation
Lack of comprehensive, unbiased, accessible datasets for neurological 

AI research
Broad collection of centralized (semi-)open-source neurological data
Inclusiveness, civic agency, and cognitive liberty [100] as leading data-

safeguarding principles
Lack of guidelines for deployment/validation of AI-based medical 

products
Feasibility studies, rapid ‘sandbox’ testing
AI-human collaboration studies [102]
Stakeholder involvement across six Ps [12]
Adhere to/extend existing validation frameworks [103]

Adoption difficulties and inaccessibility of novel techniques due to 
digital divide (infrastructure, access, quality, literacy)

Equity-focused, patient-centric data collection, development, and rollout
Multi-level awareness campaigns focused on digital health literacy
Infrastructure updates, ‘small medical FMs’, high-structure-low-data 

techniques [104, 105], clinically collected data-focused development
Bench-to-bedside translation gap [25] due to ‘expertise siloing’ and 

unbalanced regulation of medical AI
Needs-driven, value-based regulatory frameworks, balancing risk-based 

quality assurance [106], ethically responsible data handling and inno-
vation [107], and rapid testing/deployment
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datasets might perpetuate stigma surrounding neurological 
conditions [12], exacerbating health inequities in disfavor of 
identifiable groups [109].

Despite promising applications, there is a certain ‘hesi-
tance’ for adopting the latest ML techniques, given wide-
spread use of ‘quasi-canonical’ methods, high-quality data 
scarcity, inadequate interactivity/explainability of most com-
plex models, associated regulatory and ethical hurdles, and 
insufficient cross-disciplinary communication.

Foundation models

FMs may signal a paradigm shift for augmenting special-
ist care, outperforming various ‘narrow’ models, eventually 
evolving toward highly capable, ‘generalist medical AI’ (cf. 
Panel II) that needs little data to acquire novel tasks and 
return expressive outputs [26].

Beyond their conceivable role as ‘pocket neurology 
assistants’, their future use may include neuro-rehabilitative 
applications, acting as generalist interfaces for patient com-
munication/interaction with the outside world. Reciprocally, 
external signal transduction into neural activity could restore 
active societal participation.

FMs have yet to permeate medical space due to recency, 
suboptimal alignment with human intent/values, unquanti-
fiable extrapolation capabilities, and prohibitive resource 
requirements. How to improve alignment and validate medi-
cal FMs (e.g., to prevent reproducing personally identifiable 
information) remain open questions [26], currently preclud-
ing their approval as medical devices [110]. Moreover, FMs’ 
infrastructure requirements may risk ‘undemocratic’ use, 
potentially aggravating global neurological care disparities 
and excluding LMICs from equal participation in utilizing 
FMs at scale.

Biophysical computational disease models

Current FM architectures possess weak inductive biases (cf. 
Glossary), which may benefit performance when data have 
little inherent structure. However, much of the complexity 
of biomedical/neural data lies in physical, functional, and 
semantic interdependencies between biomedical entities. 
Spatiotemporal neural activity can be described by systems 
of differential equations and simulated to varying degrees 
of fidelity, given prior knowledge about neuroanatomy and 
connectivity. Furthermore, neural population codes often 
possess intrinsic low-dimensional geometry, i.e., they can 
be represented by low-dimensional variables without sig-
nificant loss of information [111]. This structural informa-
tion can be leveraged by physics-informed neural networks 
(PINNs) [104] and geometric deep learning [105], incorpo-
rating physical, geometric, or relational domain structure as 

inductive biases. This enables learning even when very little 
training data are available and confers robustness to data 
distribution shifts (i.e., significant differences between the 
training and, potentially external, real-world, validation/test 
datasets) [17], improving biophysical simulations, decoding, 
and interpretation of large-scale neural data, e.g., for interac-
tive BCI and virtual brain development. Furthermore, com-
putational microstructure modeling and MR fingerprinting 
(cf. Glossary) [112] of brain neoplasms might obviate the 
need for invasive diagnostic procedures (e.g., tissue biopsy) 
altogether [113].

We recommend:

	 (i)	 Promotion of ethics-by-design AI, [114] e.g., enforc-
ing ethical principles during training; continual vali-
dation to ensure fair, equitable AI. Follow end-to-end 
medical AI development guidelines [101].

	 (ii)	 Data- and structure-aware use of techniques, e.g., 
pretrained FMs or canonical models in low-data, low-
structure regimes, PINNs in high-structure regimes, 
e.g., virtual brains or brain microstructure modeling.

	 (iii)	 Deliberate mitigation of infrastructure burden for 
medical FM utilization and local deployment, e.g., 
via cloud services, model distillation, open-sourcing 
‘small’ FMs (cf. Glossary), or financial support for 
targeted infrastructure updates. Alleviate resource 
burden by utilizing ‘simple’ clinical data, like retinal 
photographs, or biosensors for ‘site-less’ multicenter 
clinical trials.

Data: quality, collection, use

Neurological data are often partially incomplete, unstruc-
tured and unlabeled, multimodal, longitudinal, and recorded 
non-continuously. Detailed molecular/neural activity data 
remain unavailable for most neurological conditions [56]. 
Most clinical data are not readily accessible to the research 
and broader neurology communities because of anonymi-
zation, digitization, centralization, and harmonization con-
straints, regulatory hurdles, and privacy concerns. These are 
especially pronounced in neurology, given inherent deiden-
tification challenges surrounding head MRIs, and ethical 
concerns with deciphering/manipulating neural activity.

To counteract data-related issues, globally concerted 
data collection and curation efforts are paramount, paired 
with ethical regulatory frameworks for data compliance. 
Although partially mitigable with decentralized, privacy-
preserving techniques such as federated learning (cf. Glos-
sary) [115], poor accessibility limits development of com-
plex models.

We recommend:



Journal of Neurology	

	 (i)	 Establish standards for centralization, anonymization, 
and curation of existing high-quality population-level 
data (e.g., the European Health Data Space) [116]; 
ensure inclusiveness and civic agency over data use.

	 (ii)	 Establish benchmarks and structures for improved 
data collection in neurology; facilitate responsible 
and transparent data sharing, access, and usage (e.g., 
Medical Open Network for Artificial Intelligence 
(MONAI)), preventing commercial data exploitation; 
promote ethical, culturally appropriate handling to 
prevent misuse and harm, protecting patient rights 
to cognitive liberty [100].

Feasibility and equity

To enable widespread AI use in clinical neurology, models 
must be thoroughly validated, trustworthy, and seamlessly 
integrated into clinical workflows. The demand for trust-
worthiness often presupposes explainability. Explainability 
and interactivity risk user over-trust, potentially facilitat-
ing human error [117]. For high-stakes clinical settings, it 
has been proposed to dispense with black box models in 
favor of inherently explainable models [117]. A diametri-
cally opposed view constitutes accepting a model’s internal 
reasoning opaqueness, but establishing rigorous validation 
procedures [118].

However, even accurate models may not improve expert 
performance, as experts may undervalue AIs’ predictions, 
illustrating a critical need for greater digital literacy among 
healthcare providers [102]. Global disparities in digital lit-
eracy further exacerbate adoption challenges, particularly in 
LMICs. The existing ‘digital divide’ (e.g., access, quality, 
literacy, and outcome disparities) [119] must be closed by 
identifying antecedents and consequences of digital heath 
inequities, leading to equity-focused, person-centered AI 
development.

We recommend:

	 (i)	 Conduct targeted feasibility and AI-human collabo-
ration studies, protecting human autonomy/agency 
while safeguarding patient–provider interaction [24]. 
Ensure stakeholder accountability, including resolu-
tion of medico-legal aspects and regulatory compli-
ance [109].

	 (ii)	 Promote digital health literacy by awareness/educa-
tional interventions and technology co-creation.

	 (iii)	 Utilize/develop digital health equity frameworks to 
guide AI policy development/implementation.

Regulation and innovation

Successful adoption of AI in neurology requires deliber-
ate cross-disciplinary collaboration and communication of 

domain-specific challenges to overcome existing ‘bench-to-
bedside’ translation gaps [25]. This necessitates striking the 
right balance between regulation and innovation, implicat-
ing adherence to ethical and quality assurance principles 
(e.g., risk-based practices for healthcare technology govern-
ance, evaluation, monitoring, and safety surveillance) [106] 
without hindering progress. For instance, regulators could 
establish progress-friendly regulatory and administrative 
infrastructures, enabling ‘sandbox environments’ for rapid 
medical AI testing and fast-tracked medical device approval 
(for a selection of FDA-cleared AI tools/devices in neurol-
ogy, see Table 1).

We recommend:

	 (i)	 Ensure balanced approaches to AI regulation; ensure 
ethically responsible innovation, using the OECD 
Responsible Innovation in Neurotechnology princi-
ples [107], UNESCO Recommendation on the Ethics 
of AI [120], WHO guidance on ethics and govern-
ance of artificial intelligence for health using large 
multimodal models [121], and the ‘Dignity Neurosci-
ence’ framework [122] as reference points.

	 (ii)	 Adhere to validation guidelines, covering safety, 
reproducibility, explainability, harmlessness, fair-
ness, robustness, and alignment, accounting for con-
tinually learning and generalist models [19].

	 (iii)	 Enhance collaboration across the six Ps [12]—
patients, healthcare providers, policymakers, payors, 
implementation partners, general public—to facili-
tate effective co-creation, stakeholder alignment, and 
integration into existing workflows, while mitigating 
potential skill decline of health professionals, and 
preventing the spread of misinformation. Promote 
early and meaningful patient and public involvement 
to augment needs-driven, value-based AI develop-
ment.

Conclusions

The integration of AI into clinical neurology presents 
unprecedented opportunities but is fraught with substan-
tial challenges. The confluence of enhanced computational 
power, large-scale datasets, and advanced machine learning 
algorithms may revolutionize neurology along the care tra-
jectory and foster brain health optimization across the life 
course. This encompasses predictive, diagnostic, and prog-
nostic biomarker discovery, biophysical disease modeling—
accelerating discovery of novel therapeutic targets, ‘virtual 
brain’ development, and neurorehabilitation—and the advent 
of large-scale, generalist foundation models.
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To achieve this paradigm shift, we call on the global neu-
rology community to engage in ethical-by-design, data- and 
structure-aware, and equity-centered co-creation across the 
six Ps, fostering positive AI–human interaction while safe-
guarding autonomy and accountability. Efficient, compre-
hensive, and inclusive data collection/utilization, preserving 
civic agency, as well as balanced approaches to AI regula-
tion are paramount to foster innovation, firmly anchored in 
regulatory frameworks to ensure rapid yet ethically respon-
sible progress.

Glossary

AUC​	� A measure of a model’s performance, often uti-
lized in binary classification problems. AUC 
quantifies the total area under the receiver oper-
ating characteristic (ROC) curve, with a value of 
1 indicating perfect prediction and a value of 0.5 
indicating random chance.

Brain Health	� The state of brain functioning across cog-
nitive, sensory, social-emotional, behavio-
ral and motor domains, allowing a person 
to realize their full potential over the life 
course, irrespective of the presence or 
absence of disorders (WHO definition).

Cognitive liberty	�A right to access and change one’s brain, 
making advances in brain health crucial to 
securing cognitive liberty to individuals, 
and a right from interference with mental 
privacy and freedom of thought. The con-
cept provides an important framework to 
ensure ethical innovation of advances to 
improve brain health.

Conditional average treatment effect	� The di f fer-
ence between 
the expected 
r e s p o n s e 
under  con-
trol and the 
r e s p o n s e 
u n d e r 
treatment.

Contrastive learning	� A learning framework that trains 
models to distinguish between 
similar (positive) and dissimilar 
(negative) pairs of data samples, 
enhancing the capability of mod-
els to learn robust and discrimi-
native features.

Epigenome	� The ensemble of modifications to DNA 
and DNA-associated proteins that signal 
and regulate gene expression and other 
DNA-related processes.

European health data space	� A health specific ecosys-
tem comprised of rules, 
common standards and 
practices, infrastruc-
tures and a governance 
framework.

Federated learning	� A privacy-preserving machine 
learning approach where a model 
is trained across multiple decen-
tralized devices or servers, using 
local data samples without shar-
ing them.

Foundation model	� Large-scale artificial neural net-
works trained on vast, diverse, 
multimodal datasets that have 
shown the capability to excel at 
a variety of tasks by additional 
fine-tuning, or to flexibly adapt 
to novel tasks via text instruc-
tions or examples (‘in-context 
learning’) without additional 
training, enabling fine-grained 
control over model outputs. 
‘Small FMs’ are FMs with fewer 
parameters than state-of-the-art 
large FMs.

Genome-wide association studies	� An observational study 
of a genome-wide set 
of genetic variants in 
different individuals 
to see if any variant is 
associated with a trait. 
GWASs typically focus 
on associations between 
single-nucleotide poly-
morphisms (SNPs) and 
traits like major human 
diseases.

Inductive bias	� The set of assumptions or a priori infor-
mation that a machine learning model or 
algorithm uses for prediction, e.g., physi-
cal, geometric, or causal.

MR fingerprinting	� The recording of multiple MR 
sequences with pseudorand-
omized acquisition parameters, 
combined with computational 
matching of resulting “finger-
prints” to a predefined dictionary 
of predicted signal evolutions
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Random forest	� A machine learning technique that con-
structs multiple decision trees during 
training and outputs the mode of their pre-
dictions for classification or the mean for 
regression, enhancing prediction accuracy 
and reducing overfitting.

Stimulated Raman histology	� Non-invasive, label-free 
histological imaging, 
based on stimulated 
Raman spectroscopy.

Support vector machine	� A supervised learning model that 
identifies the optimal hyperplane 
in a high-dimensional space to 
segregate different classes, maxi-
mizing the margin between data 
points of different categories.

XGBoost	�An optimized distributed gradient boosting library 
that enhances the efficiency, accuracy, and scal-
ability of machine learning models, particularly 
in tree boosting methods.
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